
Views

62. Look at the yum table:

63. Query the yum table, aggregating by year and month:

64. Save the results as a view named yum_by_month :

65. Create a view named trans_by_month :

66. Create a view named trans_by_employee :

SELECT * FROM yum;

SELECT

EXTRACT(YEAR FROM date)::INT AS year,

EXTRACT(MONTH FROM date)::INT AS month,

AVG(open) AS avg_open,

AVG(high) AS avg_high,

AVG(low) AS avg_low,

AVG(close) AS avg_close,

SUM(volume) AS total_volume

FROM yum

GROUP BY 1, 2

ORDER BY 1, 2;

CREATE VIEW yum_by_month AS

SELECT

EXTRACT(YEAR FROM date)::INT AS year,

EXTRACT(MONTH FROM date)::INT AS month,

AVG(open) AS avg_open,

AVG(high) AS avg_high,

AVG(low) AS avg_low,

AVG(close) AS avg_close,

SUM(volume) AS total_volume

FROM yum

GROUP BY 1, 2

ORDER BY 1, 2;

CREATE VIEW trans_by_month AS

SELECT

EXTRACT(YEAR FROM orderdate)::INT AS year,

EXTRACT(MONTH FROM orderdate)::INT AS month,

SUM(unit_price * quantity) AS total_sales

FROM transactions

GROUP BY 1, 2

ORDER BY 1, 2;

CREATE VIEW trans_by_employee AS

SELECT

employee_id,

SUM(unit_price * quantity) AS total_sales

CTEs

67. Most common first initial for pets:

68. Create taglines for employees:

69. Revenue by company type (LLC , Inc , etc.):

FROM transactions

GROUP BY employee_id;

WITH initials AS (

SELECT LOWER(SUBSTR(name, 1, 1)) AS initial

FROM pets

)

SELECT

initial,

COUNT(*) AS count

FROM initials

GROUP BY initial

ORDER BY count DESC

LIMIT 1;

WITH employee_data AS (

SELECT

firstname || ' ' || lastname AS name,

CASE

WHEN job = 'IT' THEN job

ELSE LOWER(job)

END AS formatted_job,

TO_CHAR(salary, 'FM$999,999,999') AS formatted_salary,

EXTRACT(YEAR FROM startdate)::INT AS year_started

FROM employees

)

SELECT

name || ' started in ' || year_started || ' and makes ' || formatted_salary || ' working in ' ||

formatted_job || '.' AS tagline

FROM employee_data;

WITH company_type_revenue AS (

SELECT

CASE

WHEN customer LIKE '%LLC' THEN 'LLC'

WHEN customer LIKE '%Inc' THEN 'Inc'

WHEN customer LIKE '%Ltd' THEN 'Ltd'

WHEN customer LIKE '%PLC' THEN 'PLC'

ELSE 'Other'

END AS company_type,

SUM(unit_price * quantity) AS revenue

FROM transactions

GROUP BY company_type

)

SELECT

company_type,

COUNT(*) AS transaction_count,

SUM(revenue) AS total_revenue

FROM company_type_revenue

GROUP BY company_type;

Joins

70. Which employee made which sale:

71. Employee who made the most in sales:

72. Solve using trans_by_employee :

73. Solve using a CTE:

74. Employees earning more from sales than 1.5 times their salary:

SELECT

e.firstname,

e.lastname,

t.*

FROM transactions t

JOIN employees e ON t.employee_id = e.employee_id;

SELECT

e.firstname || ' ' || e.lastname AS employee_name,

SUM(t.unit_price * t.quantity) AS total_sales

FROM transactions t

JOIN employees e ON t.employee_id = e.employee_id

GROUP BY e.employee_id

ORDER BY total_sales DESC

LIMIT 1;

SELECT

e.firstname || ' ' || e.lastname AS employee_name,

te.total_sales

FROM trans_by_employee te

JOIN employees e ON te.employee_id = e.employee_id

ORDER BY te.total_sales DESC

LIMIT 1;

WITH sales_by_employee AS (

SELECT

employee_id,

SUM(unit_price * quantity) AS total_sales

FROM transactions

GROUP BY employee_id

)

SELECT

e.firstname || ' ' || e.lastname AS employee_name,

sbe.total_sales

FROM sales_by_employee sbe

JOIN employees e ON sbe.employee_id = e.employee_id

ORDER BY sbe.total_sales DESC

LIMIT 1;

WITH sales_by_employee AS (

SELECT

75. Transactions before employee was hired:

76. Monthly revenue vs Yum! trade volume:

77. Include lowest and highest price for Yum! stock:

employee_id,

SUM(unit_price * quantity) AS total_sales

FROM transactions

GROUP BY employee_id

)

SELECT

e.firstname || ' ' || e.lastname AS employee_name,

e.salary,

sbe.total_sales

FROM sales_by_employee sbe

JOIN employees e ON sbe.employee_id = e.employee_id

WHERE sbe.total_sales > 1.5 * e.salary;

SELECT

t.order_id,

t.orderdate,

e.firstname || ' ' || e.lastname AS employee_name,

e.startdate

FROM transactions t

JOIN employees e ON t.employee_id = e.employee_id

WHERE t.orderdate < e.startdate;

SELECT

EXTRACT(YEAR FROM orderdate)::INT AS year,

EXTRACT(MONTH FROM orderdate)::INT AS month,

SUM(t.unit_price * t.quantity) AS company_revenue,

SUM(y.volume) AS yum_trade_volume

FROM transactions t

LEFT JOIN yum y

ON EXTRACT(YEAR FROM t.orderdate) = EXTRACT(YEAR FROM y.date)

AND EXTRACT(MONTH FROM t.orderdate) = EXTRACT(MONTH FROM y.date)

GROUP BY 1, 2

ORDER BY 1, 2;

SELECT

EXTRACT(YEAR FROM orderdate)::INT AS year,

EXTRACT(MONTH FROM orderdate)::INT AS month,

SUM(t.unit_price * t.quantity) AS company_revenue,

SUM(y.volume) AS yum_trade_volume,

MIN(y.low) AS yum_lowest_price,

MAX(y.high) AS yum_highest_price

FROM transactions t

LEFT JOIN yum y

ON EXTRACT(YEAR FROM t.orderdate) = EXTRACT(YEAR FROM y.date)

AND EXTRACT(MONTH FROM t.orderdate) = EXTRACT(MONTH FROM y.date)

GROUP BY 1, 2

ORDER BY 1, 2;

